Code source de flyingpigeon.processes.wps_sdm_csv

"""
Processes for Species distribution
Author: Nils Hempelmann ( info@nilshempelmann.de )
"""
from pywps import Process
from pywps import LiteralInput
from pywps import ComplexInput, ComplexOutput
from pywps import Format
from pywps.inout.literaltypes import AllowedValue
from pywps.app.Common import Metadata

from flyingpigeon import sdm
from flyingpigeon.sdm import _SDMINDICES_
from flyingpigeon.utils import rename_complexinputs
from flyingpigeon.utils import archive, archiveextract, download
from flyingpigeon.visualisation import map_gbifoccurrences
from flyingpigeon.visualisation import map_PAmask
from flyingpigeon.visualisation import pdfmerge, concat_images

from flyingpigeon.log import init_process_logger

import tempfile
import logging
LOGGER = logging.getLogger("PYWPS")


[docs]class SDMcsvProcess(Process): def __init__(self): inputs = [ ComplexInput('resource', 'Resource', abstract='NetCDF Files or archive (tar/zip) containing netCDF files.', metadata=[Metadata('Info')], min_occurs=1, max_occurs=1000, supported_formats=[ Format('application/x-netcdf'), Format('application/x-tar'), Format('application/zip'), ]), LiteralInput("gbif", "GBIF csv file", abstract="GBIF table (csv) with tree occurence \ (output of 'GBIF data fetch' process )", data_type='string', min_occurs=1, max_occurs=1, # default='http://localhost:8090/wpsoutputs/flyingpigeon/output_csv-abe15f64-c30d-11e6-bf63-142d277ef1f3.csv' ), LiteralInput("indices", "Indices", abstract="Climate indices related to growth conditions \ of tree species", default='TG_JJA', data_type='string', min_occurs=1, max_occurs=10, allowed_values=_SDMINDICES_ ), LiteralInput("period", "Reference period", abstract="Reference period for climate conditions\ (all = entire timeseries)", default="all", data_type='string', min_occurs=1, max_occurs=1, allowed_values=['all', '1951-1980', '1961-1990', '1971-2000', '1981-2010'] ), LiteralInput("archive_format", "Archive format", abstract="Result files will be compressed into archives.\ Choose an appropriate format", default="tar", data_type='string', min_occurs=1, max_occurs=1, allowed_values=['zip', 'tar'] ) ] outputs = [ ComplexOutput("output_gbif", "Graphic of GBIF coordinates", abstract="PNG graphic file showing the presence of tree species\ according to the CSV file", supported_formats=[Format('image/png')], as_reference=True, ), ComplexOutput("output_PA", "Graphic of PA mask", abstract="PNG graphic file showing PA mask generated based on\ netCDF spatial increment", supported_formats=[Format('image/png')], as_reference=True, ), ComplexOutput("output_indices", "Climate indices for growth conditions over all timesteps", abstract="Archive (tar/zip) containing calculated climate indices", supported_formats=[Format('application/x-tar'), Format('application/zip') ], as_reference=True, ), ComplexOutput("output_reference", "Climate indices for growth conditions of reference period", abstract="Archive (tar/zip) containing calculated climate indices", supported_formats=[Format('application/x-tar'), Format('application/zip') ], as_reference=True, ), ComplexOutput("output_prediction", "predicted growth conditions", abstract="Archive containing files of the predicted\ growth conditions", supported_formats=[Format('application/x-tar'), Format('application/zip') ], as_reference=True, ), ComplexOutput("output_info", "GAM statistics information", abstract="Graphics and information of the learning statistics", supported_formats=[Format("application/pdf")], as_reference=True, ), ComplexOutput('output_log', 'Logging information', abstract="Collected logs during process run.", as_reference=True, supported_formats=[Format('text/plain')] ) ] super(SDMcsvProcess, self).__init__( self._handler, identifier="sdm_csv", title="Species distribution Model (GBIF-CSV table as input)", version="0.10", metadata=[ Metadata("LWF", "http://www.lwf.bayern.de/"), Metadata( "Doc", "http://flyingpigeon.readthedocs.io/en/latest/descriptions/index.html#species-distribution-model"), Metadata("paper", "http://www.hindawi.com/journals/jcli/2013/787250/"), Metadata("Tutorial", "http://flyingpigeon.readthedocs.io/en/latest/tutorials/sdm.html"), ], abstract="Indices preparation for SDM process", inputs=inputs, outputs=outputs, status_supported=True, store_supported=True, ) def _handler(self, request, response): init_process_logger('log.txt') response.outputs['output_log'].file = 'log.txt' response.update_status('Start process', 0) try: LOGGER.info('reading the arguments') resources = archiveextract( resource=rename_complexinputs(request.inputs['resource'])) period = request.inputs['period'] period = period[0].data indices = [inpt.data for inpt in request.inputs['indices']] archive_format = request.inputs['archive_format'][0].data LOGGER.info("all arguments read in nr of files in resources: %s" % len(resources)) except Exception: LOGGER.exception('failed to read in the arguments') raise try: gbif_url = request.inputs['gbif'][0].data csv_file = download(gbif_url) LOGGER.info('CSV file fetched sucessfully: %s' % csv_file) except: LOGGER.exception('failed to fetch GBIF file') try: response.update_status('read in latlon coordinates', 10) latlon = sdm.latlon_gbifcsv(csv_file) LOGGER.info('got occurence coordinates %s ' % csv_file) except: LOGGER.exception('failed to extract the latlon points from file: %s' % (csv_file)) try: response.update_status('plot map', 20) occurence_map = map_gbifoccurrences(latlon) LOGGER.info('GBIF occourence ploted') except: LOGGER.exception('failed to plot occurence map') ################################# # calculate the climate indices ################################# # get the indices try: response.update_status('start calculation of indices', 30) ncs_indices = sdm.get_indices(resource=resources, indices=indices) LOGGER.info('indice calculation done') except: msg = 'failed to calculate indices' LOGGER.exception(msg) raise Exception(msg) try: # sort indices indices_dic = sdm.sort_indices(ncs_indices) LOGGER.info('indice files sorted in dictionary') except: msg = 'failed to sort indices' LOGGER.exception(msg) indices_dic = {'dummy': []} ncs_references = [] species_files = [] stat_infos = [] PAmask_pngs = [] response.update_status('Start processing for %s Datasets' % len(indices_dic.keys())) for count, key in enumerate(indices_dic.keys()): try: staus_nr = 40 + count*10 response.update_status('Start processing of %s' % key, staus_nr) ncs = indices_dic[key] LOGGER.info('with %s files' % len(ncs)) try: response.update_status('generating the PA mask', 20) PAmask = sdm.get_PAmask(coordinates=latlon, nc=ncs[0]) LOGGER.info('PA mask sucessfully generated') except: LOGGER.exception('failed to generate the PA mask') try: response.update_status('Ploting PA mask', 25) PAmask_pngs.extend([map_PAmask(PAmask)]) except: LOGGER.exception('failed to plot the PA mask') try: ncs_reference = sdm.get_reference(ncs_indices=ncs, period=period) ncs_references.extend(ncs_reference) LOGGER.info('reference indice calculated %s ' % ncs_references) except: msg = 'failed to calculate the reference' LOGGER.exception(msg) # raise Exception(msg) try: gam_model, predict_gam, gam_info = sdm.get_gam(ncs_reference, PAmask) stat_infos.append(gam_info) response.update_status('GAM sucessfully trained', staus_nr + 5) except: msg = 'failed to train GAM for %s' % (key) LOGGER.debug(msg) try: prediction = sdm.get_prediction(gam_model, ncs) response.update_status('prediction done', staus_nr + 7) except: msg = 'failed to predict tree occurence' LOGGER.exception(msg) # raise Exception(msg) # # try: # response.update_status('land sea mask for predicted data', staus_nr + 8) # from numpy import invert, isnan, nan, broadcast_arrays # , array, zeros, linspace, meshgrid # mask = invert(isnan(PAmask)) # mask = broadcast_arrays(prediction, mask)[1] # prediction[mask is False] = nan # except: # LOGGER.debug('failed to mask predicted data') try: species_files.append(sdm.write_to_file(ncs[0], prediction)) LOGGER.info('Favourabillity written to file') except: msg = 'failed to write species file' LOGGER.debug(msg) raise Exception(msg) except: msg = 'failed to process SDM chain for %s ' % key LOGGER.exception(msg) try: archive_indices = archive(ncs_indices, format=archive_format) LOGGER.info('indices added to archive') except: msg = 'failed adding indices to archive' LOGGER.exception(msg) archive_indices = tempfile.mkstemp(suffix='.tar', prefix='foobar-', dir='.') try: archive_references = archive(ncs_references, format=archive_format) LOGGER.info('indices reference added to archive') except: msg = 'failed adding reference indices to archive' LOGGER.exception(msg) archive_references = tempfile.mkstemp(suffix='.tar', prefix='foobar-', dir='.') try: archive_prediction = archive(species_files, format=archive_format) LOGGER.info('species_files added to archive') except: msg = 'failed adding species_files indices to archive' LOGGER.exception(msg) raise Exception(msg) try: stat_infosconcat = pdfmerge(stat_infos) LOGGER.debug('pngs %s' % PAmask_pngs) PAmask_png = concat_images(PAmask_pngs, orientation='h') LOGGER.info('stat infos pdfs and mask pngs merged') except: LOGGER.exception('failed to concat images') _, stat_infosconcat = tempfile.mkstemp(suffix='.pdf', prefix='foobar-', dir='.') _, PAmask_png = tempfile.mkstemp(suffix='.png', prefix='foobar-', dir='.') # self.output_csv.setValue(csv_file) response.outputs['output_gbif'].file = occurence_map response.outputs['output_PA'].file = PAmask_png response.outputs['output_indices'].file = archive_indices response.outputs['output_reference'].file = archive_references response.outputs['output_prediction'].file = archive_prediction response.outputs['output_info'].file = stat_infosconcat response.update_status('done', 100)
return response