Good to know!

This section presents general knowledge about climate data and their usage, including aspects about temporal horizons, data gaps, ensemble datasets use, uncertainty considerations, data formats and access.

General information about Climate and Weather data

  • Understand the usage of the latest (historical) data for planning for the next two years (relevance of well representing today’s climate)

Temporal horizons and predictability

A contribution from expert Louis-Philippe!?

Prediction Types

Data Gaps

*TODO** Put this in a separate section!

  • Scenarios post 2100 (Results from Anne-Sophie)
  • Horizon 2-20 years (IESO)

Ensemble Datasets

  • ensemble reduction techniques summarized (Marco’s presentation at CEATI!)

Uncertainties

Data formats

A section about the standard netCDF format for climate data.

A simple Example of accessing data on PAVICS

To access ERA5-Land data hosted on PAVICS via a Python script, locate the the OpenDAP Data URL of the dataset by clicking on the THREADS Catalog link and selecting the ERA5-Land dataset. Using the Xarray Python Library the dataset can be easily read. The output from the following code allows to interactively browse the content of the dataset:

Code
import xarray as xr

# the OpenDAP URL for hourly ERA5-Land data
url = "https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/dodsC/datasets/reanalyses/day_ERA5-Land_NAM.ncml"

# open the dataset
ds = xr.open_dataset(url, chunks={'time': -1, 'lat': 50, 'lon': 50}, decode_timedelta=False)
print("The ERA5-Land dataset:")
ds
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
The ERA5-Land dataset:
<xarray.Dataset>
Dimensions:  (lat: 800, lon: 1700, time: 26298)
Coordinates:
  * lat      (lat) float32 10.0 10.1 10.2 10.3 10.4 ... 89.5 89.6 89.7 89.8 89.9
  * lon      (lon) float32 -179.9 -179.8 -179.7 -179.6 ... -10.2 -10.1 -10.0
  * time     (time) datetime64[ns] 1950-01-01 1950-01-02 ... 2021-12-31
Data variables:
    tas      (time, lat, lon) float32 dask.array<chunksize=(26298, 50, 50), meta=np.ndarray>
    tasmin   (time, lat, lon) float32 dask.array<chunksize=(26298, 50, 50), meta=np.ndarray>
    tasmax   (time, lat, lon) float32 dask.array<chunksize=(26298, 50, 50), meta=np.ndarray>
    pr       (time, lat, lon) float32 dask.array<chunksize=(26298, 50, 50), meta=np.ndarray>
    prsn     (time, lat, lon) float32 dask.array<chunksize=(26298, 50, 50), meta=np.ndarray>
Attributes: (12/26)
    Conventions:          CF-1.8
    cell_methods:         time: mean (interval: 1 day)
    data_specs_version:   00.00.07
    domain:               NAM
    format:               netcdf
    frequency:            day
    ...                   ...
    dataset_description:  https://www.ecmwf.int/en/era5-land
    license_type:         permissive
    license:              Please acknowledge the use of ERA5-Land as stated i...
    attribution:          Contains modified Copernicus Climate Change Service...
    citation:             Muñoz Sabater, J., (2021): ERA5-Land hourly data fr...
    doi:                  https://doi.org/10.24381/cds.e2161bac

A quicklook visualization of a day in the data is shown below.

Code
ds.tas.sel(time="2019-01-16").plot()

(ToDo?): Access a climate simulation ensemble